STAFF

久保田 浩司

Koji Kubota

准教授

TEL
011-706-8127
FAX
011-706-6561
E-mail
kbteng.hokudai.ac.jp
ROOM
フロンティア応用科学研究棟 4-08

発表論文

  • 79.

    Solvent-free Zinc-mediated Béchamp Reduction Using Mechanochemistry

    Kubota, K.*; Nagao, A.; Ito, H.* RSC Mechanochem. 2025, Just Accepted
    DOI: 10.1039/D4MR00138A

  • 78.

    Solid-State Aromatic Nucleophilic Fluorination: A Rapid, Practical, and Environmentally Friendly Route to N-Heteroaryl Fluorides

    Kubota, K.*; Makino, T.; Kondo, K.; Seo, T.; Jin, M.; Ito, H.* Green Chem. 2025, Just Accepted
    DOI: 10.1039/D4GC06362G

  • 77.

    Direct Arylation of gem-Difluorostyrenes Using in Situ Mechanochemically Generated Calcium-Based Heavy Grignard Reagents

    Wang, X.; Fukuzawa, Y.; Gao, P.; Jiang, J.; Maeda, S.; Kubota, K.*; Ito, H.* RSC Mechanochem. 2025, Just Accepted
    DOI: 10.1039/d4mr00135d

  • 76.

    Scaling theory for the kinetics of mechanochemical reactions with convective flow

    Yamamoto, T.*; Kubota, K.; Harabuchi, Y.; Ito, H. RSC Mechanochem. 2025, Just Accepted
    DOI: 10.1039/D4MR00091A

  • 75.

    Mechanochemical Generation of Aryl Barium Nucleophiles from Unactivated Barium Metal

    Kubota, K.*; Kawamura, S.; Jiang, J.; Maeda, S.; Ito, H.* Chem. Sci. 2024, 15, 17453–17459.
    DOI: 10.1039/D4SC05361C

  • 74.

    Direct arylation of alkyl fluorides using in situ mechanochemically generated calcium-based heavy Grignard reagents

    Gao, P.; Jiang, J.; Fukuzawa, Y.; Maeda, S.; Kubota, K.*; Ito, H.* RSC Mechanochem. 2024, 1, 486–491.
    DOI: 10.1039/D4MR00067F

  • 73.

    Dissolution-Limited Reactions in Solid-State Synthesis

    Yamamoto, T.*; Kubota, K.; Ito, H. J. Soc. Rheol. Jpn. 2024, 52, 161–170.
    DOI: 10.1678/rheology.52.161

  • 72.

    Mechanochemistry Enabled Highly Efficient Solvent-Free Deoxygenation of Phosphine Oxides in Air

    Kubota, K.*; Hisazumi, R.; Seo, T.; Ito, H.* RSC Mechanochem. 2024, 1, 250–254.
    DOI: 10.1039/D4MR00011K

  • 71.

    Highly Efficient and Air-tolerant Calcium-based Birch Reduction Using Mechanochemistry

    Kubota, K.*; Fukuzawa, Y.; Kondo, K.; Gao, Y.; Ito, H.* Chem. Lett. 2024, 53, upae060.
    DOI: 10.1093/chemle/upae060

  • 70.

    Solid-state nickel(0)-mediated Yamamoto coupling enabled by mechanochemistry

    Kubota, K.*; Shizukuishi, N.; Kubo, S.; Ito, H.* Chem. Lett. 2024, 53, upae056.
    DOI: 10.1093/chemle/upae056

  • 69.

    Mechanochemistry enabling highly efficient Birch reduction using sodium lumps and D-(+)-glucose

    Kondo, K.; Kubota, K.*; Ito, H.* Chem. Sci. 2024, 15, 4452–4457.
    DOI: 10.1039/D3SC06052G

  • 68.

    Solid-State Mechanochemistry for the Rapid and Efficient Synthesis of Tris-Cyclometalated Iridium(III) Complexes

    Kubota, K.*; Endo, T.; Ito, H.* Chem. Sci. 2024, 15, 3365–3371.
    DOI: 10.1039/D3SC05796H

  • 67.

    Ring Expansion of Cyclic Boronates via Oxyboration of Arynes

    Shiratori, Y. ; Jiang, J.; Kubota, K.; Maeda, S; Ito, H.* J. Am. Chem. Soc. 2024, 146, 1765.
    DOI: 10.1021/jacs.3c11851

  • 66.

    Using Mechanochemistry to Activate Commodity Plastics as Initiators for Radical Chain Reactions of Small Organic Molecules

    Kubota, K.*; Jiang, J.; Kamakura, Y.; Hisazumi, R.; Endo, T.; Miura, D.; Kubo, S.; Maeda, S.; Ito, H.* J. Am. Chem. Soc. 2024, 146, 1062.
    DOI: 10.1021/jacs.3c12049

  • 65.

    Mechanochemical Synthesis of Non-Solvated Dialkylalumanyl Anion and XPS Characterization of Al(I) and Al(II) Species

    Kurumada, S.; Yamanashi, R.; Sugita, K.; Kubota, K.; Ito, H.; Ikemoto, S.; Chen, C.; Moriyama, T.; Muratsugu, S.; Tada, M.; Koitaya, T.; Ozaki, T.; Yamashita, M.* Chem. Eur. J. 2023, e202303073.
    DOI: 10.1002/chem.202303073

  • 64.

    Solid-state mechanochemical cross-coupling of insoluble substrates into insoluble products by removable solubilizing silyl groups: Uniform synthesis of nonsubstituted linear oligothiophenes

    Kubota, K.*; Kondo, K.; Seo, T.; Jin, M.; Ito, H.* RSC Adv. 2023, 13, 28652–28657.
    DOI: 10.1039/D3RA05571J

  • 63.

    Stereospecific synthesis of silicon-stereogenic optically active silylboranes and general synthesis of chiral silyl anions

    Wang, X.; Feng, C.; Jiang, J.; Maeda, S.; Kubota, K.*; Ito, H.* Nature Commun. 2023, 14, 5561.
    DOI: 10.1038/s41467-023-41113-z

  • 62.

    Dual Nickel(II)/Mechanoredox Catalysis: Mechanical-force-driven Aryl-amination Reactions Using Ball Milling and Piezoelectric Materials

    Seo, T.; Kubota, K.*; Ito, H.* Angew. Chem. Int. Ed. 2023, 62, e202311531.
    DOI: 10.1002/anie.202311531

  • 61.

    Exploring novel synthetic concepts and strategies using mechanochemistry

    Kubota, K.* Bull. Chem. Soc. Jpn 2023, 96, 913–930.
    DOI: 10.1246/bcsj.20230157

  • 60.

    An Improved Catalytic System for Solid-state Iridium(I)-catalyzed C–H Borylation Using Mechanochemistry

    Kondo, K.; Kubota, K.*; Ito, H.* Chem. Lett. 2023, 52, 333–336.
    DOI: 10.1246/cl.230081

  • 59.

    Mechanochemical Approach for Air-Tolerant and Extremely Fast Lithium-Based Birch Reductions in Minutes

    Gao, Y.; Kubota, K.*; Ito, H.* Angew. Chem. Int. Ed. 2023, 62, e202217723.
    DOI: 10.1002/anie.202217723

  • 58.

    In Situ and Real-Time Visualization of Mechanochemical Damage in Double-Network Hydrogels by Prefluorescent Probe via Oxygen-Relayed Radical Trapping

    Zheng, Y.; Jiang, J.; Jin, M.*; Miura, D.; Lu, F. X.; Kubota, K.; Nakajima, T.; Maeda, S.*; Ito, H.*; Gong, J. P.* J. Am. Chem. Soc. 2023, 145, 7376–7389.
    DOI: 10.1021/jacs.2c13764

  • 57.

    Mechanochemistry-Directed Ligand Design: Development of a High-Performance Phosphine Ligand for Palladium-Catalyzed Mechanochemical Organoboron Cross-Coupling

    Seo, T.; Kubota, K.*; Ito, H.* J. Am. Chem. Soc. 2023, 145, 6823–6837.
    DOI: 10.1021/jacs.2c13543

  • 56.

    Solid-state Silver-catalyzed Ring-opening Fluorination of Cyclobutanols Using Mechanochemistry

    Isshiki, R.*; Kubota, K.*; Ito, H.* Synlett 2023, 34, 1419–1424.
    DOI: 10.1055/a-2021-9599

  • 55.

    Solid-state cross-coupling reactions of insoluble aryl halides under polymer-assisted grinding conditions

    Kubota, K.*; Seo, T.; Ito, H.* Faraday Discuss. 2023, 241, 104–113.
    DOI: 10.1039/D2FD00121G

  • 54.

    Mechanochemical Protocol Facilitates the Generation of Arylmanganese Nucleophiles from Unactivated Manganese Metal

    Takahashi, R.; Gao, P.; Kubota, K.*; Ito, H.* Chem. Sci. 2023, 14, 499–505.
    DOI: 10.1039/D2SC05468J


    This paper has been selected and included in the 2023 most popular organic chemistry articles collection.

  • 53.

    Cu(I)-Catalyzed Enantioselective γ-Boryl Substitution of Trifluoromethyl- and Silyl-substituted Alkenes

    Oyama, N.; Akiyama, S.; Kubota, K.; Imamoto, T.; Ito, H.* Eur. J. Org. Chem. 2022, e202200664.
    DOI: 10.1002/ejoc.202200664

  • 52.

    Mechanochemically Generated Calcium-Based Heavy Grignard Reagents and Their Application to Carbon−Carbon Bond-Forming Reactions

    Gao, P.; Jiang, J.; Maeda, S.; Kubota, K.*; Ito, H.* Angew. Chem. Int. Ed. 2022, 61, e202207118.
    DOI: 10.1002/anie.202207118

  • 51.

    Palladium-catalyzed solid-state borylation of aryl halides using mechanochemistry

    Kubota, K.*; Baba, E.; Seo, T.; Ishiyama, T.; Ito, H.* Beilstein J. Org. Chem. 2022, 18, 855.
    DOI: 10.3762/bjoc.18.86

  • 50.

    Insight into the Reactivity Profile of Solid-State Aryl Bromides in Suzuki-Miyaura Cross-Coupling Reactions Using Ball Milling

    Kubota, K.*; Kondo, K.; Seo, T.; Ito, H.* Synlett 2022, 33, 898–902.
    DOI: 10.1055/a-1748-3797

  • 49.

    Efficient Access to Materials-Oriented Aromatic Alkynes via the Mechanochemical Sonogashira Coupling of Solid Aryl Halides with Large Polycyclic Conjugated Systems

    Gao, Y.; Feng, C.; Seo, T.; Kubota, K.*; Ito, H.* Chem. Sci. 2022, 13, 430–438.
    DOI: 10.1039/D1SC05257H

  • 48.

    Solid-State C−N Cross-Coupling Reactions with Carbazoles as Nitrogen Nucleophiles Using Mechanochemistry

    Kubota, K.*; Endo, T.; Uesugi, M.; Hayashi, Y.; Ito, H.* ChemSusChem 2022, 15, e202102132.
    DOI: 10.1002/cssc.202102132

  • 47.

    Development of Selective Reactions Using Ball Milling

    Kubota, K.*; Ito, H.* J. Synth. Org. Chem. Jpn. 2021, 79, 492–502.
    DOI: 10.5059/yukigoseikyokaishi.79.492

  • 46.

    Palladium-Catalyzed Solid-State Polyfluoroarylation of Aryl Halides Using Mechanochemistry

    Takahashi, Rikuro; Seo, T.; Kubota, K.*; Ito, H.* ACS Catal. 2021, 11, 14803–14810.
    DOI: 10.1021/acscatal.1c03731

  • 45.

    Mechanochemical synthesis of magnesium-based carbon nucleophiles in air and their use in organic synthesis

    Takahashi, R.; Hu, A.; Gao, P.; Gao, Y.; Pang, Y.; Seo, T.; Maeda, S.; Jiang, J.; Takaya, H.; Kubota, K.*; Ito, H.* Nature Commun. 2021, 12, 6691.
    DOI: 10.1038/s41467-021-26962-w

  • 44.

    Synthesis of Hydrosilylboronates via the Monoborylation of a Dihydrosilane Si−H Bond and Their Application for the Generation of Dialkylhydrosilyl Anions

    Takeuchi, T.; Shishido, R.; Kubota, K.*; Ito, H.* Chem. Sci. 2021, 12, 11799–11804.
    DOI: 10.1039/D1SC01440D

  • 43.

    Synthesis of Chiral α-Amino Tertiary Boronates via the Catalytic Enantioselective Nucleophilic Borylation of Dialkyl Ketimines

    Kubota, K.*; Miura, D.; Takeuchi, T.; Osaki, S.; Ito, H.* ACS Catal. 2021, 11, 6733–6740.
    DOI: 10.1021/acscatal.1c01689

  • 42.

    Introduction of a Luminophore into Generic Polymers via Mechanoradical Coupling with a Prefluorescent Reagent

    Kubota, K.*; Toyoshima, N.; Miura, D.; Jiang, J.; Maeda, S.; Jin, M.*; Ito, H.* Angew. Chem. Int. Ed. 2021, 60, 16003–16008.
    DOI: 10.1002/anie.202105381

  • 41.

    Tackling Solubility Issues in Organic Synthesis: Solid-State Cross-Coupling of Insoluble Aryl Halides

    Seo, T.; Toyoshima, N; Kubota, K.*; Ito, H.* J. Am. Chem. Soc. 2021, 143, 6165–6175.
    DOI: 10.1021/jacs.1c00906

  • 40.

    A Copper(I)-Catalyzed Radical Relay Reaction Enabling the Intermolecular 1,2-Alkylborylation of Unactivated Olefins

    Akiyama, S.; Oyama, N.; Endo, T.; Kubota, K.; Ito, H.* J. Am. Chem. Soc. 2021, 143, 5260–5268.
    DOI: 10.1021/jacs.1c02050

  • 39.

    Copper(I)-Catalyzed Stereoselective Silylative Dearomatization of Indoles and Pyrroles using Silylboronates

    Hayama, K.; Takahashi, Rikuro.; Kubota, K.; Ito, H.* Chem. Lett. 2021, 50, 289–292.
    DOI: 10.1246/cl.200725

  • 38.

    A Glove-box- and Schlenk-line-free Protocol for Solid-state C-N Cross-coupling Reactions Using Mechanochemistry

    Kubota, K.*; Takahashi, Rikuro; Uesugi, M.; Ito, H.* ACS Sustainable Chem. Eng. 2020, 8, 16577–16582.
    DOI: 10.1021/acssuschemeng.0c05834

  • 37.

    Solid-State Radical C−H Trifluoromethylation Reactions Using Ball Milling and Piezoelectric Materials

    Pang, Y.; Lee, J. W.; Kubota, K.*; Ito, H.* Angew. Chem. Int. Ed. 2020, 59, 22570–22576.
    DOI: 10.1002/anie.202009844

    This is our second paper for mechanoredox reaction. See also, https://science.sciencemag.org/content/366/6472/1500

  • 36.

    General Synthesis of Trialkyl- and Dialkylarylsilylboranes: Versatile Silicon Nucleophiles in Organic Synthesis

    Shishido, R.; Uesugi, M.; Takahashi, Rikuro.; Mita, T.; Ishiyama, T.; Kubota, K.*; Ito, H.* J. Am. Chem. Soc. 2020, 142, 14125–14133.
    DOI: 10.1021/jacs.0c03011

  • 35.

    Selective Mechanochemical Monoarylation of Unbiased Dibromoarenes by In-situ Crystallization

    Seo, T.; Kubota, K.*; Ito, H.* J. Am. Chem. Soc. 2020, 142, 9884–9889.
    DOI: 10.1021/jacs.0c01739

    Under ball milling reaction conditions, palladium-catalyzed Suzuki–Miyaura cross-coupling reactions of unbiased dibromoarenes selectively afford the monoarylated products. This study gives a new approach that uses in-situ structure transitions in solids to achieve selective organic transformations difficult with traditional solution-based synthesis.

  • 34.

    Copper(I)-Catalyzed Boryl Substitution of 1-Trifluoromethyl Allenes for the Synthesis of 3-Boryl-Substituted 1,1-gem-Difluorodienes

    Akiyama, S.; Nomura, S; Kubota, K.; Ito, H.* J. Org. Chem. 2020, 85, 4172–4181.
    DOI: 10.1021/acs.joc.9b03353

    A method to synthesize 3-boryl-1,1-gem-difluorodienes via the copper(I)-catalyzed boryl substitution of trifluoromethyl-substituted allenes was developed. The borylated compounds were obtained up to 91% yield with excellent selectivity. We proposed that the reaction proceeded via γ-selective borylcupration into the trifluoromethyl-substituted allene, followed by copper(I)-β-fluoro elimination. Subsequent transformations of the borylation product by Suzuki–Miyaura cross-coupling or Diels–Alder reaction provided various compounds bearing a difluoro moiety, which are difficult to synthesize by existing methods.

  • 33.

    Synthesis of Chiral N-Heterocyclic Allylboronates via the Enantioselective Borylative Dearomatization of Pyrroles

    Hayama, K.; Kojima, R.; Kubota, K.; Ito, H.* Org. Lett. 2020, 22, 739–744.
    DOI: 10.1021/acs.orglett.9b04581

  • 32.

    Air- and moisture-stable Xantphos-ligated palladium dialkyl complex as a precatalyst for cross-coupling reactions

    Takahashi, R.; Kubota, K.*; Ito, H.* Chem. Commun. 2020, 56, 407–410.
    DOI: 10.1039/C9CC06946A

  • 31.

    Mechanochemical cross-coupling reactions

    Kubota, K.*; Ito, H.* Trends Chem. 2020, 2, 1066–1081.
    DOI: 10.1016/j.trechm.2020.09.006

  • 30.

    Redox Reactions of Small Organic Molecules Using Ball Milling and Piezoelectric Materials

    Kubota, K.*; Pang, Y.; Miura, A.; Ito, H.* Science 2019, 366, 1500–1504.
    DOI: 10.1126/science.aay8224

  • 29.

    Solid-State Suzuki-Miyaura Cross-Coupling Reactions: Olefin-Accelerated C–C Coupling Using Mechanochemistry

    Seo, T.; Ishiyama, T.; Kubota, K.*; Ito, H.* Chem. Sci. 2019, 10, 8202–8210.
    DOI: 10.1039/C9SC02185J

  • 28.

    Catalytic Enantioselective Synthesis of Allylic Boronates Bearing a Trisubstituted Alkenyl Fluoride and Related Derivatives

    Akiyama, S.; Kubota, K.; Mikus, M. S.; Paioti, P. H. S.; Romiti, F.; Liu, Q.; Zhou, Y.; Hoveyda, A. H.*; Ito, H.* Angew. Chem. Int. Ed. 2019, 58, 11998–12003.
    DOI: 10.1002/anie.201906283

      

    Highlighted as a Frontispiece in Issue 35, 2019

  • 27.

    Copper(I)-Catalyzed Enantioconvergent Borylation of Racemic Benzyl Chlorides Enabled by Quadrant-by-Quadrant Structure Modulation of Chiral Bisphosphine Ligands

    Iwamoto, H.; Endo, K.; Ozawa, Y.; Watanabe, Y.; Kubota, K.; Imamoto, T.; Ito, H.* Angew. Chem. Int. Ed. 2019, 58, 11112–11117.
    DOI: 10.1002/anie.201906011

  • 26.

    Synthesis of 2-alkyl-2-boryl-substituted-tetrahydrofurans via copper(I)-catalysed borylative cyclization of aliphatic ketones

    Kubota, K.; Uesugi, M.; Osaki, S.; Ito, H.* Org. Biomol. Chem. 2019, 17, 5680–5683.
    DOI: 10.1039/C9OB00962K

  • 25.

    Mechanochemistry allows carrying out sensitive organometallic reactions in air: Glove-box-and-Schlenk-line-free synthesis of oxidative addition complexes from aryl halides and palladium(0)

    Kubota, K.*; Takahashi, R.; Ito, H.* Chem. Sci. 2019, 10, 5837–5842.
    DOI: 10.1039/C9SC01711A

  • 24.

    Iridium(I)-Catalyzed C-H Borylation in Air by Using Mechanochemistry

    Pang, Y.; Ishiyama, T.; Kubota, K.*; Ito, H.* Chem. Eur. J. 2019, 25, 4654–4659.
    DOI: 10.1002/chem.201900685

  • 23.

    Olefin-accelerated solid-state C–N cross-coupling reactions using mechanochemistry

    Kubota, K.*; Seo, T.; Koide, K.; Hasegawa, Y.; Ito, H.* Nature Communications 2019, 10, 111.
    DOI: 10.1038/s41467-018-08017-9

    https://www.nature.com/articles/s41467-018-08017-9

    ・北海道大学 PRESS RELEASE 固体状態で進行するクロスカップリング反応を開発
    Behind the Paper (Nature Research Chemistry Community) Cross-Coupling in Solid Using Mechanochemistry
    Highlighted in News Paper: 日経産業新聞20190111
    Highlighted in News Paper: 日刊工業新聞20190115
    Highlighted in News Web: NHK 北大 医薬品合成で新手法開発
    Highlighted in News Web: 環境展望台 北大 固体状態で進行する有機合成反応プロセスを開発
    Selected as “Nature Communications Editor’s Highlights”
    Highlighted in Phys.org.: Boosting solid state chemical reactions

    Highlighted in Converter News: Olefin Enables Efficient Solvent-Free Cross-Coupling Reactions
    Highlighted in Technology Networks: Olefin Makes Chemistry Greener

    Highlighted in Chem Station: スポットライトリサーチ ”メカノケミストリーを用いた固体クロスカップリング反応”

  • 22.

    Copper(I)-Catalyzed Stereoselective Defluoroborylation of Aliphatic Gem-Difluoroalkenes

    Ito, H.*; Seo, T.; Kojima, R.; Kubota, K. Chem. Lett. 2018, 47, 1330–1332.
    DOI: 10.1246/cl.180656

  • 21.

    Enantioselective Synthesis of N,S-Acetals by an Oxidative Pummerer Type Transformation Using Phase-Transfer Catalysis

    Biswas, S.; Kubota, K.; Orlandi, M.; Turberg, M.; Miles, D. H.; Sigman, M. S.; Toste, F. D. Angew. Chem. Int. Ed. 2018, 57, 589–593.
    DOI: 10.1002/anie.201711277

  • 20.

    Palladium Oxidative Addition Complexes for Peptide and Protein Crosslinking

    Kubota, K.; Dai, P.; Pentelute B. L.; Buchwald S. L. J. Am. Chem. Soc. 2018, 140, 3128–3133.
    DOI: 10.1021/jacs.8b00172

  • 19.

    Copper(I)-Catalyzed Diastereoselective Dearomative Carboborylation of Indoles

    Hayama, K.; Kubota, K.; Iwamoto, H.; Ito, H.* Chem. Lett. 2017, 46, 1800–1802.
    DOI: 10.1246/cl.170825

  • 18.

    Copper(I)-Catalyzed Regio- and Stereoselective Intramolecular Alkylboration of Propargyl Ethers and Amines

    Iwamoto, H.; Ozawa, Y.; Kubota, K.; Ito, H.* J. Org. Chem. 2017, 82, 10563–10573.
    DOI: 10.1021/acs.joc.7b02071

  • 17.

    Stereodivergent Hydrodefluorination of gem-Difluoroalkenes: Selective Synthesis of (Z)- and (E)-Monofluoroalkenes

    Kojima, R.; Kubota, K.; Ito, H.* Chem. Commun. 2017, 53, 10688–10691.
    DOI: 10.1039/C7CC05225A

    ・Highlighted in Synfacts 2018, 14, 55. DOI: 10.1055/s-0036-1591076

  • 16.

    Copper(I)-Catalyzed Enantioselective Nucleophilic Borylation of Ketones: Synthesis of Enantioenriched Chiral Tertiary alpha-Hydroxyboronates

    Kubota, K.; Osaki, S.; Jin, M.; Ito, H.* Angew. Chem. Int. Ed. 2017, 56, 6646–6650.
    DOI: 10.1002/anie.201702826

    北海道大学 PRESS RELEASE 

    ・Highlighted in Synfacts 201713, 745. DOI: 10.1055/s-0036-1590558

  • 15.

    Formal Nucleophilic Borylation and Borylative Cyclization of Organic Halides

    Kubota, K.; Iwamoto, H.; Ito, H.* Org. Biomol. Chem. 2017, 15, 285–300.
    DOI: 10.1039/C6OB02369J

    OBC review

    • Selected as the most cited and accessed articles published in Organic & Biomolecular Chemistry (OBC) in 2017.

  • 14.

    Synthesis of Enantiomerically Enriched Chiral Tetrahydroquinolines via Sequential Dearomatization/Enantioselective Borylation Reactions

    Kubota, K.; Watanabe, Y.; Ito, H.* Adv. Synth. Catal. 2016, 358, 15, 2379–2384.
    DOI: 10.1002/adsc.201600372


    abstract_quinoline

  • 13.

    Computational Insight into the Enantioselective Nucleophilic Borylation of a Polarized C=O Double Bond Catalyzed by Di-phosphine-Borylcopper(I) Complexes

    Kubota, K.; Jin, M.; Ito, H.* Organometallics 2016, 35, 1376–1383.
    DOI: 10.1021/acs.organomet.5b00621

     

    org

  • 12.

    Enantioselective Synthesis of Chiral Piperidines via the Stepwise Dearomatization/Borylation of Pyridines

    Kubota, K.; Watanabe, Y.; Hayama, K.; Ito, H.* J. Am. Chem. Soc. 2016, 138, 13, 4338–4341.
    DOI: 10.1021/jacs.6b01375

    s1-ln204455595844769-1939656818Hwf1112863307IdV-3045673942044555PDF_HI0001-6

  • 11.

    Highly Selective Markovnikov Hydroboration of Alkyl-Substituted Terminal Alkenes with a Phosphine-Copper(I) Catalyst

    Iwamoto, H.; Kubota, K.; Ito, H. Chem. Commun. 2016, 5916–5919.
    DOI: 10.1039/C6CC00782A

    MHB_GA_1 (1)   iwamoto_cover
    Highlighted as a Back Cover in Issue 35, 2016

  • 10.

    Copper(I)-Catalyzed Diastereoselective Borylative Exo-Cyclization of Alkenyl Aryl Ketones

    Yamamoto, E.; Kojima, R.; Kubota, K.; Ito, H. Synlett 2015, 27, 2, 272–276.
    DOI: 10.1055/s-0035-1560721

  • 9.

    Enantioselective Borylative Dearomatization of Indoles through Copper(I) Catalysis

    Kubota, K.; Hayama, K.; Iwamoto, H.; Ito, H. Angew. Chem. Int. Ed. 2015, 54, 8809–8813.
    DOI: 10.1002/anie.201502964

    1511291_784871204944392_5626421871371438753_n

    ・Highlighted in Synfacts 2015, 11, 840. DOI: 10.1055/s-0034-1381153

  • 8.

    Copper(I)-Catalyzed Carbon–Halogen Bond-Selective Boryl Substitution of Alkyl Halides Bearing Terminal Alkene Moieties

    Iwamoto, H.; Kubota, K.; Yamamoto, E; Ito, H. Chem. Comm. 2015, 51, 9655–9658.
    DOI: 10.1039/C5CC02760H

  • 7.

    Reaction Optimization, Scalability, and Mechanistic Insight on the Catalytic Enantioselective Desymmetrization of 1,1-Diborylalkanes via Suzuki–Miyaura Cross-Coupling

    Sun, H.; Kubota, K.; Hall, D. G. Chem. Eur. J. 2015, Early View
    DOI: doi/10.1002/chem.201406680

    mcontent

  • 6.

    Silicon-Tethered Strategy for Copper(I)-Catalyzed Stereo- and Regioselective Alkylboration of Alkynes

    Kubota, K.; Iwamoto, H.; Yamamoto, E; Ito, H. Org. Lett. 2015, 17, 620–623.
    DOI: 10.1021/ol503620n

    ol-2014-03620n_0007 

    ・Highlighted in Synfacts 2015, 11, 406. DOI: 10.1055/s-0034-1380388

     

  • 5.

    Copper(I)-Catalyzed Enantioselective Nucleophilic Borylation of Aldehydes: An Efficient Route to Enantiomerically Enriched α-Alkoxyorganoboronate Esters

    Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2015, 137, 1, 420–424.
    DOI: 10.1021/ja511247z

    kubotaabs 

    ・Highlighted in Synfacts 2015, 11, 286. DOI: 10.1055/s-0034-1380053

  • 4.

    Selective Synthesis of Organoboron Compounds with Copper(I)-Phosphine Complex Catalysts

    Yamamoto, E.; Takenouchi, Y.; Kubota, K.; Ito, H. J. Synth. Org. Chem. Jpn. 2014, 72, 758–769.
    DOI: 10.5059/yukigoseikyokaishi.72.758

  • 3.

    Regio- and Enantioselective Monoborylation of Alkenylsilanes Catalyzed by an Electron-Donating Chiral Phosphine-opper(I) Complex

    Kubota, K.; Yamamoto, E.; Ito, H. Advanced Synthesis & Catalysis 2013, 355, 3527–3531.
    DOI: 10.1002/adsc.201300765

    mcontent

    ・Highlighted in Synfacts, 2013, 10, 284. DOI: 10.1055/s-0033-1340694

  • 2.

    Copper(I)-Catalyzed Borylative Exo-Cyclization of Alkenyl Halides Containing Unactivated Double Bond

    Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2013, 135, 2635–2640.
    DOI: 10.1021/ja3104582

    HP1_450

  • 1.

    Copper(I)-Catalyzed Boryl Substitution of Unactivated Alkyl Halides

    Ito, H.; Kubota, K. Org. Lett. 2012, 14, 890–893.
    DOI: 10.1021/ol203413w

Contactus

伊藤 肇 教授

E-mail: hajitoeng.hokudai.ac.jp